Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 95(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38563715

RESUMO

Using a stereo camera system, a new diagnostic for the safety factor of the core plasma based on the pellet ablation trail is applied on the Experimental Advanced Superconducting Tokamak (EAST). In EAST discharge No. 128 874, a shattered pellet injection system is applied to inject a shattered neon pellet into the EAST. Since the strong magnetic field in tokamaks binds the ablated pellet material, the orientation of the pellet ablation trail is the same as the local magnetic field direction. Thus, from the three-dimensional reconstruction result of the pellet ablation trail, the local safety factor q can be obtained. The motional Stark effect (MSE) diagnostic is applied to determine the safety factor q profile in this shot. The determined safety factor q results for this new diagnostic are in quantitative agreement with those from the MSE diagnostic with the mean relative difference of only 6.8%, confirming the effectiveness of this new diagnostic of the safety factor.

2.
Phys Rev E ; 109(3-2): 035202, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38632806

RESUMO

Molecular dynamical simulations are performed to investigate the scaling of the transverse sound speed in two-dimensional (2D) and 3D Yukawa fluids. From the calculated diagnostics of the radial distribution function, the mean-squared displacement, and the Pearson correlation coefficient, the approximate isomorphic curves for 2D and 3D liquidlike Yukawa systems are obtained. It is found that the structure and dynamics of 2D and 3D liquidlike Yukawa systems exhibit the isomorphic property under the conditions of the same relative coupling parameter Γ/Γ_{m}=const. It is demonstrated that the reduced transverse sound speed, i.e., the ratio of the transverse sound speed to the thermal speed, is an isomorph invariant, which is a quasiuniversal function of Γ/Γ_{m}. The obtained isomorph invariant of the reduced transverse sound speed can be useful to estimate the transverse sound speed, or determine the coupling strength, with applications to dusty (complex) plasma or colloidal systems.

3.
Phys Rev E ; 107(5-2): 055211, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37328975

RESUMO

Equilibrium molecular dynamics simulations are performed to study two-dimensional (2D) dusty plasma liquids. Based on the stochastic thermal motion of simulated particles, the longitudinal and transverse phonon spectra are calculated, and used to determine the corresponding dispersion relations. From there, the longitudinal and transverse sound speeds of 2D dusty plasma liquids are obtained. It is discovered that, for wavenumbers beyond the hydrodynamic regime, the longitudinal sound speed of a 2D dusty plasma liquid exceeds its adiabatic value, i.e., the so-called fast sound. This phenomenon appears at roughly the same length scale of the cutoff wavenumber for transverse waves, confirming its relation to the emergent solidity of liquids in the nonhydrodynamic regime. Using the thermodynamic and transport coefficients extracted from the previous studies, and relying on the Frenkel theory, the ratio of the longitudinal to the adiabatic sound speeds is derived analytically, providing the optimal conditions for fast sound, which are in quantitative agreement with the current simulation results.


Assuntos
Poeira , Som , Simulação de Dinâmica Molecular , Termodinâmica , Movimento (Física)
4.
IEEE Trans Cybern ; 53(8): 5000-5012, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37030690

RESUMO

This article is concerned with the output feedback security control of a class of high-order nonlinear-interconnected systems with denial-of-service (DoS) attacks, nonlinear dynamics, and exogenous disturbances. First, extreme learning machine (ELM) and adaptive techniques are adopted to approximate the unknown nonlinearities. Then, novel adaptive ELM-based nonlinear state observers with adaptive compensation functions are developed to estimate the unmeasurable states during DoS attacks under the influence of the disturbances. Further, by combining with the backstepping control and filtering techniques, adaptive ELM-based controllers are proposed to achieve uniformly ultimately bounded results based on the observation and adaption control signals under the influence of DoS attacks, nonlinear dynamics, and exogenous disturbances. Comparative studies are carried out to validate the effectiveness of the developed ELM-based adaptive observation and control strategies for two interconnected power systems.

5.
Phys Rev E ; 105(5-2): 059903, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35706325

RESUMO

This corrects the article DOI: 10.1103/PhysRevE.103.013211.

6.
Front Public Health ; 10: 854772, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35548081

RESUMO

Background: Physician dissatisfaction with more time spent on related paperwork but less time available for direct interaction with patients is increasing internationally. Increased physician workload resulting from paperwork might negatively affect their interaction with patients and increase the risk for burnout. This study aimed to investigate the level of physician workload tethered to paperwork during outpatient encounters and explore its latent workload subgroups among Chinese physicians. Methods: A cross-sectional survey was conducted via online questionnaire primarily in 24 hospitals in 6 provinces in Eastern, Central, and Western China from November 2020 to February 2021. The Chinese physician mental workload scale developed by our research team was used for assessment of physician workload tethered to paperwork. Physicians were categorized into different subgroups of workload via latent profile analysis. Multinomial logistic regression was subsequently performed to examine how demographic variables differ among physicians belonging to different subgroups. Results: A total of 1,934 valid questionnaires were received. Chinese physicians reported medium levels of workload while performing non-physician-patient communication work tasks characterized by paperwork during outpatient encounters. Four latent workload subgroups were identified: "low workload group" (8.8%), "medium workload group" (34.0%), "high workload group" (42.1%) and "very high workload group" (15.1%). Compared with the other latent workload subgroups, physicians belonging to the "very high workload group" were more likely to be younger, married, those who had worse health status, lower educational levels and lower average monthly incomes, those who worked more years in the current institution, more hours per week and longer outpatient hours per week, and those who worked in public general hospitals, tertiary B hospitals and Obstetrics and Gynecology, and saw more than 50 outpatients per day, with more time spent on per patient. Conclusions: There exit four latent workload subgroups among Chinese physicians tethered to paperwork during outpatient encounters along with great individual variations among these subgroups. The characteristics of the latent "very high workload group" can help permit more targeted guidance for developing interventions with optimized human resource allocation to, in turn, increase the time available for direct interaction with patients, thereby resulting in improved quality of physician-patient interactions and decreased risk for physician burnout.


Assuntos
Esgotamento Profissional , Médicos , Esgotamento Profissional/epidemiologia , Estudos Transversais , Humanos , Pacientes Ambulatoriais , Carga de Trabalho
7.
ACS Appl Mater Interfaces ; 14(15): 17783-17793, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35393856

RESUMO

Advanced intelligent systems for delivery of pesticides or fertilizers require formulations that allow for long-term efficacy. In this work, a metal-organic framework (MOF) hybrid was developed for long-term pest management and micronutrient supply. Zeolitic imidazolate framework-8 was fabricated for crop micronutrients (Zn2+) supply and insecticide dinotefuran (DNF) encapsulation. Polymethylmethacrylate was polymerized in situ to impart the MOF hybrid with sustained cargo delivery. Then, zein was introduced to facilitate protease-triggered cargo release associated with the microenvironment of pests and targeted release. The resulting MOF hybrid exhibited stimulus-responsive, slow-release behaviors. Sustained DNF delivery was achieved over a period of at least 32 days in soil. Compared with that of free DNF, the UV resistance of DNF in the MOF hybrid increased by nearly 10 times, and the insecticidal efficiency increased 33.3% with leaching treatment and 40.1% after incubating in a greenhouse for 14 days. This MOF hybrid provides a controlled, targeted, and sustained delivery formulation for long-term pest management and crop micronutrient supply and has huge application prospects in sustainable agriculture.


Assuntos
Estruturas Metalorgânicas , Oligoelementos , Fertilizantes , Micronutrientes , Peptídeo Hidrolases , Controle de Pragas
8.
Phys Rev E ; 105(3-2): 035203, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35428122

RESUMO

Langevin dynamical simulations are performed to study the elastic behaviors of two-dimensional (2D) solid dusty plasmas under the periodic shear deformation. The frequency- and strain-dependent shear moduli G(ω,γ) of our simulated 2D Yukawa solid are calculated from the ratio of the shear stress to strain in different orientations. The shear-softening and -hardening properties in different lattice orientations are discovered from the obtained G(ω,γ). The component of the elastic constant tensor corresponding to the shear deformation is also calculated, whose variation trend exactly agrees with the discovered shear-softening and -hardening features in different shear directions. It is also found that the shear modulus of the 2D Yukawa solid always increases monotonically with the frequency.

9.
J Chem Theory Comput ; 18(5): 3039-3051, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35472264

RESUMO

The simulation of optical spectra is essential to molecular characterization and, in many cases, critical for interpreting experimental spectra. The most common method for simulating vibronic absorption spectra relies on the geometry optimization and computation of normal modes for ground and excited electronic states. In this report, we show that the utilization of such a procedure within an adiabatic linear response (LR) theory framework may lead to state mixings and a breakdown of the Born-Oppenheimer approximation, resulting in a poor description of absorption spectra. In contrast, computing excited states via a self-consistent field method in conjunction with a maximum overlap model produces states that are not subject to such mixings. We show that this latter method produces vibronic spectra much more aligned with vertical gradient and molecular dynamics (MD) trajectory-based approaches. For the methylene blue chromophore, we compare vibronic absorption spectra computed with the following: an adiabatic Hessian approach with LR theory-optimized structures and normal modes, a vertical gradient procedure, the Hessian and normal modes of maximum overlap method-optimized structures, and excitation energy time-correlation functions generated from an MD trajectory. Because of mixing between the bright S1 and dark S2 surfaces near the S1 minimum, computing the adiabatic Hessian with LR theory and time-dependent density functional theory with the B3LYP density functional predicts a large vibronic shoulder for the absorption spectrum that is not present for any of the other methods. Spectral densities are analyzed and we compare the behavior of the key normal mode that in LR theory strongly couples to the optical excitation while showing S1/S2 state mixings. Overall, our study provides a note of caution in computing vibronic spectra using the excited-state adiabatic Hessian of LR theory-optimized structures and also showcases three alternatives that are less sensitive to adiabatic state mixing effects.


Assuntos
Simulação de Dinâmica Molecular , Teoria Quântica , Azul de Metileno
10.
IEEE Trans Neural Netw Learn Syst ; 33(8): 3474-3486, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33523820

RESUMO

This article addresses the problem of fault-tolerant consensus control of a general nonlinear multiagent system subject to actuator faults and disturbed and faulty networks. By using neural network (NN) and adaptive control techniques, estimations of unknown state-dependent boundaries of nonlinear dynamics and actuator faults, which can reflect the worst impacts on the system, are first developed. A novel NN-based adaptive observer is designed for the observation of faulty transformation signals in networks. On the basis of the NN-based observer and adaptive control strategies, fault-tolerant consensus control schemes are designed to guarantee the bounded consensus of the closed-loop multiagent system with disturbed and faulty networks and actuator faults. The validity of the proposed adaptively distributed consensus control schemes is demonstrated by a multiagent system composed of five nonlinear forced pendulums.

11.
Langmuir ; 38(1): 275-281, 2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-34936360

RESUMO

Hydration of TiO2 facets controls the reactions occurring at the mineral-water interfaces. However, the underlying mechanism of the facet-dependent hydration and the effect of hydration on contaminant adsorption are still ambiguous. Herein, arsenite [As(III)] adsorption on hydrated {001}, {100}, {101}, and {201} TiO2 was explored by integrating multiple characterizations and density functional theory (DFT) calculations. Our macroscopic adsorption results show an As(III) adsorption density order of {201} > {100} > {101} > {001}, though As(III) on each facet formed a bidentate binuclear structure, as evidenced by the extended X-ray absorption fine structure analysis. The in situ diffuse reflectance infrared Fourier transform spectroscopy analysis identified distinctive surface hydroxyls on four-faceted TiO2 upon water adsorption. The hydrated surface regulated the subsequent As(III) adsorption, giving an As(III) adsorption energy order of {201} (-0.95 eV) < {100} (-0.38 eV) < {101} (-0.005 eV) < {001} (0.04 eV) according to DFT calculations. The As(III) adsorption energy on hydrated facets was linearly correlated with the macroscopical As(III) adsorption density (R2 = 0.99, p < 0.05), revealing that the impregnable water binding highly suppressed the exchange of As(III) molecules with adsorbed water. Our study provided a novel insight into the facet-dependent interfacial adsorption.

12.
J Phys Chem B ; 125(44): 12214-12227, 2021 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-34726915

RESUMO

The environment surrounding a chromophore can dramatically affect the energy absorption and relaxation process, as manifested in optical spectra. Simulations of nonlinear optical spectroscopy, such as two-dimensional electronic spectroscopy (2DES) and transient absorption (TA), will be influenced by the computational model of the environment. We here compare a fixed point charge molecular mechanics model and a quantum mechanical (QM) model of the environment in computed 2DES and TA spectra of Nile red in water and the chromophore of photoactive yellow protein (PYP) in water and protein environments. In addition to simulating these nonlinear optical spectra, we directly juxtapose the computed excitation energy correlation function to the dynamic Stokes shift function often used to analyze environment dynamics. Overall, we find that for the three systems studied here the mutual electronic polarization provided by the QM environment manifests in broader 2DES signals, as well as a larger reorganization energy and a larger static Stokes shift due to stronger coupling between the chromophore and the environment.


Assuntos
Simulação de Dinâmica Molecular , Água , Eletrônica , Teoria Quântica , Análise Espectral
13.
Phys Rev E ; 104(3-2): 035207, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34654197

RESUMO

The convergence of the steady-state fluctuation theorem (SSFT) is investigated in a shear-flow experiment performed in a dusty plasma. This medium has a viscoelastic property characterized by the Maxwell relaxation time τ_{M}. Using measurements of the time series of the entropy production rate, for subsystems of various sizes, it is discovered that the SSFT convergence time decreases with the increasing system size until it eventually reaches a minimum value of τ_{M}, no matter the size of the subsystem. This result indicates that the convergence of the SSFT is limited by the energy-storage property of the viscoelastic medium.

14.
ACS Appl Mater Interfaces ; 13(36): 43374-43386, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34469104

RESUMO

The development of modern agriculture has prompted the greater input of herbicides, insecticides, and fertilizers. However, precision release and targeted delivery of these agrochemicals still remain a challenge. Here, a pesticide-fertilizer all-in-one combination (PFAC) strategy and deep learning are employed to form a system for controlled and targeted delivery of agrochemicals. This system mainly consists of three components: (1) hollow mesoporous silica (HMS), to encapsulate herbicides and phase-change material; (2) polydopamine (PDA) coating, to provide a photothermal effect; and (3) a zeolitic imidazolate framework (ZIF8), to provide micronutrient Zn2+ and encapsulate insecticides. Results show that the PFAC at concentration of 5 mg mL-1 reaches the phase transition temperature of 1-tetradecanol (37.5 °C) after 5 min of near-infrared (NIR) irradiation (800 nm, 0.5 W cm-2). The data of corn and weed are collected and relayed to deep learning algorithms for model building to realize object detection and further targeted weeding. In-field treatment results indicated that the growth of chicory herb was significantly inhibited when treated with the PFAC compared with the blank group after 24 h under NIR irradiation for 2 h. This system combines agrochemical innovation and artificial intelligence technology, achieves synergistic effects of weeding and insecticide and nutrient supply, and will potentially achieve precision and sustainable agriculture.


Assuntos
Portadores de Fármacos/química , Fertilizantes , Herbicidas/química , Inseticidas/química , Nanopartículas/química , Ácido 2,4-Diclorofenoxiacético/química , Ácido 2,4-Diclorofenoxiacético/toxicidade , Animais , Cichorium intybus/efeitos dos fármacos , Aprendizado Profundo , Portadores de Fármacos/efeitos da radiação , Liberação Controlada de Fármacos , Álcoois Graxos/química , Álcoois Graxos/efeitos da radiação , Guanidinas/química , Guanidinas/toxicidade , Herbicidas/toxicidade , Indóis/química , Indóis/efeitos da radiação , Raios Infravermelhos , Insetos/efeitos dos fármacos , Inseticidas/toxicidade , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/efeitos da radiação , Nanopartículas/efeitos da radiação , Neonicotinoides/química , Neonicotinoides/toxicidade , Nitrocompostos/química , Nitrocompostos/toxicidade , Polímeros/química , Polímeros/efeitos da radiação
15.
Phys Rev E ; 103(6-1): 063214, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34271705

RESUMO

Dynamics of dislocations and defects are investigated in 2D dusty plasma experiments with two counterpropagating flows. It is experimentally demonstrated that the Orowan equation is able to accurately determine the plastic strain rate from the motion of dislocations, well agreeing with the shear rate defined from the drift velocity gradient. For a higher shear rate, the studied system is in the liquidlike flow state, as a result, the determined shear rate from the Orowan equation deviates from its definition. The obtained probability distribution function of dislocations from the experiments clearly shows that the dislocation motion can be divided into the local and gliding ones. All findings above are further verified by the corresponding Langevin dynamical simulations with various levels of shear rates. The dislocation and defect analysis results from these simulations clearly indicate that the defect and dislocation dynamics in the sheared dusty plasmas clearly exhibit two stages as the shear rate increases.

16.
Sci Total Environ ; 789: 147845, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34058575

RESUMO

Stimulus-responsive pesticide or fertilizer systems have been emerged to improve the use efficiency of agrochemicals, reduce over-application and ensuing environmental problems. However, environmental-friendly synthesis of these systems still remain challenging. In this work, an environmental-friendly synthesis strategy has been developed to form a pesticide and fertilizer combination to achieve the integration of plant protection and nutrient supply. This pesticide-fertilizer combination system was fabricated using ammonium zinc phosphate (ZNP) and in-situ synthesized zeolitic imidazolate framework-8 (ZIF-8) as nutrients resources, and dinotefuran (DNF) as a pesticide. DNF was encapsulated in-situ (loading capacity of 12.32 ± 0.46%) during the ZIF-8 crystal synthesis process, rather than loaded by further adsorption, which improved its stability and prevented premature or rapid release. The hydrophobic ZIF-8 provided a pH-responsive slow-release behavior. The cumulative released DNF within seven days at pH 4.0, 7.0 and 10.0 was 66.30%, 40.41%, and 37.44%, respectively. The pesticide-fertilizer combination system showed significant effects on corn seed pre-cultivation, soil cultivation and pest control. This work provides a strategy for the integration of pesticide and fertilizer, which will reduce negative environmental effects caused by their over-applications and have great potential in modern sustainable agriculture.


Assuntos
Praguicidas , Zeolitas , Fertilizantes/análise , Nutrientes , Solo
17.
ACS Appl Mater Interfaces ; 13(11): 13629-13636, 2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33689278

RESUMO

The arrival of the era of artificial intelligence is constantly advancing the development of flexible electronic materials. However, low mechanical properties, nonflexible signal transmission, and insensitive signal output have restricted their development as sensors. In this study, a superstretching MXene composite conductive hydrogel was developed with a tensile strain of more than 1800%. The hydrogel was used as a flexible wearable sensor to detect human motion signals in real time. High sensitivity was achieved using the sensor to discern multidirectional human motions, such as bending of human joints, throat vocalization, swallowing, and pulse beat. In addition, rapid resilience was observed for the MXene composite hydrogel after unloading reverse compressive stress, which can quickly cause a specific current response in the micropressure area without leaving any traces. This thixotropic sensor achieves a rapid response to bidirectional stress and has huge application prospects in the field of human body motion detection and national defense information encryption.

18.
Phys Rev E ; 103(1-1): 013202, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33601497

RESUMO

The head-on collision of compressional shocks in two-dimensional dusty plasmas is investigated using both molecular dynamical and Langevin simulations. Two compressional shocks are generated from the inward compressional boundaries in simulations. It is found that, during the collision of shocks, there is a generally existing time delay of shocks τ, which diminishes monotonically with the increasing compressional speed of boundaries, corresponding to the time resolution of the studied system. Dispersive shock waves (DSWs) are generated around the shock front for some conditions. It is also found that the period of the DSW decreases monotonically with the inward compressional speed of boundaries, more substantially than the time delay of shocks τ. When the inward compressional speed of boundaries increases further, the DSWs gradually vanish. We speculate that, for these high compressional speeds of boundaries, the period of the DSW might be reduced to a comparable timescale of the time delay of shocks τ, i.e., the time resolution of our studied system, or even shorter, thus the DSW reasonably vanishes.

19.
Phys Rev E ; 103(1-1): 013211, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33601509

RESUMO

Langevin dynamical simulations of shear-induced melting two-dimensional (2D) dusty plasmas are performed to study the determination of the shear viscosity of this system. It is found that the viscosity calculated from the Green-Kubo relation, after removing the drift motion, well agrees with the viscosity definition, i.e., the ratio of the shear stress to the shear rate in the sheared region, even the shear rate is magnified ten times higher than that in experiments. The behaviors of shear stress and its autocorrelation function of shear-induced melting 2D dusty plasmas are compared with those of uniform liquids at the same temperatures, leading to the conclusion that the Green-Kubo relation is still applicable to determine the viscosity for shear-induced melting dusty plasmas.

20.
Annu Rev Phys Chem ; 72: 165-188, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33395546

RESUMO

Including both environmental and vibronic effects is important for accurate simulation of optical spectra, but combining these effects remains computationally challenging. We outline two approaches that consider both the explicit atomistic environment and the vibronic transitions. Both phenomena are responsible for spectral shapes in linear spectroscopy and the electronic evolution measured in nonlinear spectroscopy. The first approach utilizes snapshots of chromophore-environment configurations for which chromophore normal modes are determined. We outline various approximations for this static approach that assumes harmonic potentials and ignores dynamic system-environment coupling. The second approach obtains excitation energies for a series of time-correlated snapshots. This dynamic approach relies on the accurate truncation of the cumulant expansion but treats the dynamics of the chromophore and the environment on equal footing. Both approaches show significant potential for making strides toward more accurate optical spectroscopy simulations of complex condensed phase systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...